The Evolution of a Long-Lived Mesoscale Convective System Observed by GLM
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An initial GLM maturity index distinguishes

between storms that Initiate many large sta-

tionary flashes — associated with new or dissi-

pating convection — and storms that produce
many long propagating flashes — common in mature
systems with an extensive electrified stratiform region.

Given the total flash rate (TFR), large stationary flash rate
(LSFR), and propagating flash rate (PFR) of a storm system:
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S ‘ The total flash rate (TFR) peaks at 01, 12, and 22 UTC on
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The propagating flash rate peaks at 02 UTC on 9/5 and 01
UTC on 9/6 as the system matures and the TFR declines.
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CONCLUSIONS

This case suggests that comparing flash types can help identify organizing, maturing, and dis-
sipating convection, which can aid thunderstorm forecasts and rainfall retrievals.
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The total Wilson current follows the TFR trend over land with peaks exceeding 20 A on 9/4 and
9/5, while over ocean the total Wilson current reaches 20 A with low flash rates (9/7).




